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LETlXR TO THE EDlTOR 

On some solutions of the two-dimensional sineGordon equation 

N Martinov and N Vitanov 
Department of Condensed Matter Physics, Faculty of Physics, University of Sofia, bould. 
A lvanov 5, Sofia 1126, Bulgaria 

Received 6 November 1991 

Abstnct. There exists an approach for finding of exact solutions of the two-dimensional 
sine-Gordon equation. Using this approach three classes of solutions have been found. 
One of the classes consists of running wave solutions which are a generalization of the 
solutions of the one-dimensional sine-Gordon equation. This class of Solutions is studied 
here. 

The one-dimensional sineGordon equation 

& - & =sin +!.x, !! !!) 
is well known because it possesses soliton solutions [ l ]  and has many physical and 
mathematical applications. This equation has arisen in differential geometry [Z]. Now 
the one-dimensional sine-Gordon equation is a pattern equation for description of 
self-induced transparency [ 3 ] ,  for description of magnetic domain wall dynamics [ 4 ] ,  
and so on [ S I .  A correspondence between the standing wave solutions of this equation 

the s.!f-cQfisl&n! ?wQ-dimensiona! PQjs$on-RQ!fZm.nn StnJc!UTeS &Q eris& [G!.  

m , + ~ ~ ~ - ~ , , = s i n ~ ! x , y ,  1 )  (2) 

4(x, Y, 1 )  =4tan-'[Af(ax; kl)g!Py+ 8 ~ 1 ;  k d l  ( 3 )  

An approach for solving the two-dimensional sine-Gordon equation: 

was found. The solutions found are of the type 

... LA-- s - 4  -- f - - l  <..-A I n__ Tm..-L: -ll:-.:.. F....^+:--- n-A L "..A L ---*I...:- w,,r,r " -, ". " - ~~ ',, -,." E. - 1 1  IC-. J'nC"". U L I L y L , . .  . U . I C L . " . I ~  -.." n, -11" 8.2 'Ill L l l r l l  

corresponding elliptic integral modules; a, p and y are parameters. 
The generating equations of the Jacohi elliptic functions are: 

( f ' ) 2  = a,  f 4+ b, f '+ cI 

(g ' )2  = a2g4+ b2g2+ cz ( 4 )  

where a : 9  b:;  c : ;  a2; b2; e,, are parameters. If ( 4 )  is substituted into (2) the result is: 

2f3g[u3al  - ( p 2  - S2y2)A2c2]+fg[a2bl  +(p'- 2j2yZ)b2- 13 

+2fg3[(p2-8'y2)a2 - a2A2cl ]  

+ f 3 g 3 [ A 2 -  u2A2b,  - ( p 2 -  S2y')A2bJ = 0. (5) 
If 

u2bl - (8'y-Pi)b2= 1 

a2al = 0 

( 8 2 y 2 - p 2 ) ~ 2 +  u2A2c,  = O  ( 6 ~ )  
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then (3) is a solution of the two-dimensional sine-Gordon equation. The relations 
(6a-c) are characteristic relations for the solution (3). Due to these relations three 
classes of solutions of the equation (2) were found. One of the classes consists of 
running wave solutions which are a generalization of the solutions of the one- 
dimensional sine-Gordon equation. For this class of solutions 

s2yz-p2> 0. (7) 

a 2 b l - ~ Z b 2 = l  @a)  

a2a ,+y2AZc2=0  (8b) 

y2a2+a2A2c, = 0. (8C) 

Lei T2 ~ g y 2 - p ,  ;he for= of :he jjs;eiii of ie:aiions ( 6 )  is 2s fo;;o.iv.si 

The system (Sa-c) is similar to the system of characteristic relations for the 
one-dimensional sine-Gordon equation. If p = O  then the system (8) and the system 
of characteristic relations for the one-dimensional sine-Gordon equation are the same. 
In this case the solution (3) of the two-dimensional sine-Gordon equation is reduced 
to the solution 

$(x, t )  =4tan-'[Af(ax; k,)g(Syf; k2)1 (9) 

of the one-dimensionai sine-Gordon equation. 
The solution (3) of the two-dimensional sineGordon equation depends on six 

parameters: a, p, y, A, k,, k2, among which the three relations (6a-c) exist i.e. the 
solution depends on three free parameters. The solution (9) of the one-dimensional 
sine-Gordon equation depends on two free parameters. In this case the third parameter 
p is fixed: p =O. 

parameters a2, b2. c2 depend on the module k2. 

dimensional sine-Gordon equation were found: 

E e  parameters si, b i ,  f i  depend en the e!!iptic in!egr2! m!?d?l!e ki 2nd the 

Due to the relations (6a-c) and (7) the following seven solutions of the two- 

#,=4tan-'[Acn(ax; k,) cn(py+Syf; k2) 

, ~ 2  A2[aZ(AZ+l)+l ]  
K I =  

1L2 A ~ [ ( s ~ ~ ~ - ~ ~ ) ( A ~ + ~ ) -  i] 
(S2y2-p2)(A2+ 1)' 

K 2 =  
a2(A2+ 1)' 
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A ~ - ( S ’ ~ ~ - ~ ~ ) ( A ~ +  1) 
k:= n2A2(A2+ 1) A ’ ( S ~ ~ ~ - ~ ~ ) ( A ~ +  1) 

k:=1- 
a 2 ( ~ 2 +  I ) ~ - A ~  

A2 
A + I  

n2+ (S2y2- 82) = 7j-- 

c n ( P y + W ;  k2)] 
s n ( 8 y + W ;  k2) 

1 - ( ~ ~ ~ ~ - p ~ ) ( i  - A ~ ) / A ~  k : = l +  
1 +a2(i - A ~ ) / A ’  k : = l -  

a 2 ( 1 - A 2 )  

A2 
A - 1  

sn(ax;  k,) 

( 52y2 - p 2 ) (  1 - A 2 )  

“ 2 - ( 8 2 + p 2 )  =2 

cn(ax; k,)  dn(py + W ;  h)] 

A2-  ( S 2 y 2  -p2)(1 - A2)2 
(S2y2 -p2)A’( 1 - A2)  

k: = 
a2(i - A ~ ) ~ + A ~  

k: = 

g 2 y 2 - p 2 =  A2a2 
a’( 1 - A 2 )  

cn(ax; k,) dn(py+Syt; kJ 
sn(ax; k , )  

( s 2 y 2  - p2)(  1 - A ~ ) ~ -  
k: = 

a2(1 - A ~ ) ~ +  A’ 

( g Y 2 - p 2 )  =- 

k: = 
a2( 1 - A2) (S2y2-  p’)( 1 - A 2 )  

1 
1-A2’  

These seven solutions are distributed among the following four classes: 
Class A: the solution q5, 
Class B: the solutions $2 and $4 

Class C: the solutions q53 and $5 

Class D: the solutions q56 and $7. 
These classes of solutions are analogous to the corresponding classes of solutions of 
the one-dimensional sine-Gordon equation. 
Class A. Let p = O .  Then the solution 4, is reduced to the corresponding solution of 
the one-dimensional sine-Gordon equation 

4, = 6, = 4 tan-l[A cn(ax; k,) cn(Syt ;  k2)] 

A2[S2y2(A2+ 1 ) -  I ]  k:=- A ~ [ ~ ~ ( A ~ +  I ) +  11 
a2(A2+  1)2 S2y2(A2+ 1)2 

k: = 

The solution 6, describes the plasma oscillations in one-dimensional Josephson 
junction. The solution 4, of the two-dimensional sine-Gordon equation is a generaliz- 
ation about the solution 6’ 
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Class B. The solutions +2 and 4, are generalizations of the solutions belong to the 
class of solutions of the one-dimensional sine-Gordon equation describing the breather 
oscillations in the Josephson junction. If p = 0 the solution c $ ~  is reduced to: 

q52=&2=4tan-1[Adn(ax; k , )  sn(8yr; k 2 ) ]  

a Z ( ~ 2 +  I ) - A ~  A2[I-S2y2(A2+1)] a2=A2S2y2. (18) 
S2y2(A2+ 1) 

k: = !:= a~A2(A2+ 1 )  

The solution +4 is reduced to the solution: 

Class C. If p = 0 then the solutions q53 and & are reduced to the following solutions 
of the one-dimensional sine-Gordon equation 

I - S ~ Y ~ ( I - A ~ ) / A ~  
k : = l +  

1 +a2(i - A ' ) / A ~  k:= 1 - 
a2(I-A2)  S2y2( 1 -A2)  

The solutions & and & describe the fluxon oscillations in one-dimensional Joseph- 

Class D. The solutions &, and $, belong to this class. If p = 0 these solutions are 
reduced to the following solutions of the one-dimensional sineGordon equation: 

--- :....̂ +:-- ̂..-I &I.- "-,...:--" I .̂.-I A. - - ~  *LA- .... ~ A:-.---:..-", -"---,:-,..:-..- 
lull ,"L'*LLU" an1u ,.IC 3U1UUU113 Vy3 nu" c p s  a,= IllGill Lwu-uIIII~IIDLuLIaI ~G,,~L,,L.aUUU>. 

* 2  P2- .2 / .  .2\2 
/i -U 7 ( , - A ,  

S2y2A2( 1 -A2)  

&2(; _ A 2 j 2 + A 2  

k: = k: = S2y2 A2m2 
a'( 1 - A2) 

cn(ax; k , )  dn(6yt; k2)  
sn(ax; k , )  

a2y2( 1 - A ~ ) ~  - 
k: = 

a'( 1 - A2)2+ A2 
k'= a2(1-AZ) Szy2(l -A2)  
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The solutions of the two-dimensional sine-Gordon equation (10)-(16) describe 
running waves. As opposed to this the solutions of the one-dimensional sine-Gordon 
equation describe standing waves. All the same the solutions of the two-dimensional 
sine-Gordon equation are a generalization of the solutions of the one-dimensional 
sine-Gordon equation. 

Special cases for the solutions of the equation (2) exist. In these cases the modules 
of the Jacobi ellitic functions k,  = 0 or k2 = 0 or k,  = 1 or k2 = 1 or k,  = 0, k, = 0 or 
k, = 0, k2= 1, or k, = 1, k2 = 0 or k, = k2 = 1. (The modules are limited bilaterally: 
0 S k,,2 rz 1). Ifthe module k = 0 the Jacobi elliptic functions are reduced to the following 
functions: 

sn(x; O)=sin(x) cn(x; 0) = cos(x) dn( x; 0) = 1. (25) 

If the module k = 1 the Jacobi elliptic functions are reduced to the functions: 
- - / - . , \ -A-/ . . .  *i-*/, . . . -h/-\  I?&\ 
CL,,", L, -"1L,*, 1, -',CY"',\*/. !-"I --I... > \ - b m - h , . . \  

>,'\A, I ,  - ,PE,,,,", 

Some of the possible special cases are given below. 
Class A. Due to the system (6) the special case k, = k2 = 0 was found. Then 

A? 2 2 -  1 1 6 y - p  +2. 
A f l  

a>=-- and 
A2+ 1 

In this case the solution Cl is reduced to the following solution of the one-dimensional 
sine-Gordon equation: 

$, = +,,, = 4  tan-' (27) 

If f i  = O  it can be seen that +,,, is reduced to the following solution of the one- 
dimensional sine-Gordon equation: 

The solution &,,, is known as a breather, so that the solution A,, is a generalization 
about the breather solution of equation (1). But the solution +,., does not describe a 
standing wave; it describes a running wave. 
Class B. The solution &: two special cases are possible here: 

1. k , = l ,  k 2 = 0 .  Then 

and the solution qj2 is reduced to the following solution of the two-dimensional 
sine-Gordon equation: 
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After the substitution P = 0 (29) is reduced to the breather solution of the one- 
dimensional sine-Gordon equation like the solution (27). This fact bring about the 
conclusion that the connection between the classes of solutions A and B of the 
two-dimensional sine-Gordon equation exist. 

2. k,[l-1/A4]’/2; k2= l .  Then 

and the solution q5z is reduced to the following solution: 

q5r,2=4tan-1(Adn[e. A2+1’  ( 

q52,2 is the two-dimensional generalization of the next solution of the one-dimensional 
sine-Gordon equation: 

4 2 . 2  = 4 tan-’( A dn [ &; (1 -$)’”] tanh [ f (&)I). 
The solution q54: there is a difference between the solutions q52 and +.,. The solution 
q54 is not reduced to the breather solution (29). Only one special case is possible for 

1/2 

q54: k, = [ 1 -$] k2 = 0. 

Then 
A2 a2=A2+1 A2 62y2=P2+(A2+  1)2 

and & is reduced to the following solution of equation (2): . 

c $ ~ , ,  = 4 tan-’ [ A  dn [ & ; ( 1 -+)lf2] 

The solution (32) is a generalization of the next solution of equation (1): 

= 4  tan-’ [ A dn [&; (1 -$)I”] coth[ f (&)]I. 
Class C. The solution b3: two special cases are possible here: 

1. k,=k2=I .Then  

and the solution ah is reduced to: 

(33) 
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After the substitution P = 0 into (34) the result is as follows: 

(35) 

Equation (35) is a well known solution of equation (1). It describes soliton-antisoliton 
collisions (fluxon-antifluxon collisions in a one-dimensional Josephson junction). The 
solution (34) is a two-dimensional generalization of the soliton-antisoliton collision. 

2. kl = (1 - l/A4)’”; k2 = 0. Then 

and the solution & is reduced to a solution consisting of a function of the product of 
a Jacobi elliptic function and an elementary function: 

But now the elementary function is not hyperbolic. It is a trigonometric function. The 
solution (36) is a generalization of the corresponding solution of equation (1): 

The solution + 5 :  an important difference between the solutions +3 and c $ ~  is that the 
solution +5 is not reduced to the soliton-antisoliton collision. Only one special case 
is possible here: 

Then 

and $5 is reduced to the following solution of the two-dimensional sine-Gordon 
equation: 

=4tan-l[ A dn[*; A’-1 (1  -$)’”] 

If p = O  the b5., is reduced to the corresponding solution of the one-dimensional 
sine-Gordon equation: 

&,, = 4  tan-’{ A dn[&; A’-1 (1 -$)’”] cot [ (*A)]) A’-1 . (39) 
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Class D. The solution +6:  the following special case is possible here: k, = k2 = 1. Then 

and +6 is reduced to the solution: 

If p = 0 the result is: 

&6.1=4tan-'[A sinh[ (L)"2x] 1-A2 A2 1. 
cosh [ f ( 2 ) " 2 t ]  

is a solution of the one-dimensional sine-Gordon equation. It describes a 
soliton-soliton collision. Another name for this solution is a 4a-impulse. Hence &, 
is a two-dimensional generalization of the 4a-impulse solution. 

is that 
+, is not reduced to a two-dimensional or one-dimensional 4a-impluse. 

Using an approach for solving the two-dimensional sine-Gordon equation, seven 
solutions of this equation were found. These solutions describe running waves and 
they are generalizations of the solutions of the one-dimensional sine-Gordon equation. 
The solutions are distributed into four classes, analogous to the corresponding classes 
of solutions of equation (1). Two types of special case for the solutions of the 
two-dimensional sine-Gordon equation exist. The first type includes solutions of the 
equation (2) consisting only of elementary functions. These solutions are generalizations 
of the solutions of the one-dimensional sine-Gordon equation describing a breather, 
a soliton-antisolition collision and 4a-impulse. The second type of special case includes 
solutions of equation (2) consisting of a function of a product of an Jacobi elliptic 
function and an elementary function. These solutions are also generalizations of the 
corresponding solutions of the one-dimensional sine-Gordon equation. 

. The solution +,: an important difference between the solutions 46 and 
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